Direct, sequence-specific detection of dsDNA based on peptide nucleic acid and graphene oxide without requiring denaturation.

نویسندگان

  • Jieon Lee
  • Il-Soo Park
  • Euihan Jung
  • Younghoon Lee
  • Dal-Hee Min
چکیده

Sequence-specific detection of double stranded DNA (dsDNA) is important in various research fields. In general, denaturation of dsDNA into single strands is necessary for the sequence-specific recognition of probes to target DNA, posing several drawbacks which decrease the efficiency as a DNA sensor. Herein, we report a direct, sequence-specific dsDNA detection system without requiring any thermal denaturing step. Our strategy utilizes peptide nucleic acid (PNA) and graphene oxide (GO) as a probe and as a fluorescence quencher, respectively. The PNA first binds to the end of dsDNA strand due to the relatively easily dissociable terminal base pairs of DNA duplex. Next, superior binding affinity of PNA towards complementary DNA induces branch migration for gradual strand replacement, resulting in the formation of PNA/DNA duplex. Unlike other dsDNA sensors based on complementary DNA probes, PNA in combination with GO enabled hybridization with the target sequence hidden as a duplex form without denaturing step and thus, the formation of PNA/DNA duplex was translated into selective fluorescence signal. Moreover, it provided tighter turn-on signal control with very low background signal and high sensitivity and sequence selectivity even in the presence of serum proteins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybridization of DNA and PNA molecular beacons to single-stranded and double-stranded DNA targets.

Molecular beacons are sensitive fluorescent probes hybridizing selectively to designated DNA and RNA targets. They have recently become practical tools for quantitative real-time monitoring of single-stranded nucleic acids. Here, we comparatively study the performance of a variety of such probes, stemless and stem-containing DNA and PNA (peptide nucleic acid) beacons, in Tris-buffer solutions c...

متن کامل

Evaluation of Nucleic Acid Sequence Based Amplification (NASBA) and Reverse Transcription Polymerase Chain Reaction for Detection of Coxsackievirus B3 in Cell Culture and Animal Tissue Samples

Enteroviruses are the causative agents of a number of diseases in humans. Group B coxsackieviruses are believed to be the most common viral agents responsible for human heart disease. Genomic data of enteroviruses has allowed developing new molecular approaches such as Nucleic Acid Sequence Based Amplification (NASBA) for detection of such viruses. In this study, coxsackievirus B3 (CVB3) was de...

متن کامل

Sensitivity and Specificity of Nucleic Acid Sequence-Based Amplification Method for Diagnosis of Cutaneous Leishmaniasis

Abstract Background and Objective: Culture, microscopic method is a gold standard method for identification of Lishmania parasite. The use of Molecular methods such as RT- PCR compared to microscopic methods has a higher sensitivity and specificity however, it is not widely used due to its expensive equipment and the time requested. The use of nucleic acid sequence based amplification (NASBA) ...

متن کامل

C3an00266g 3216..3220

DNA detection based on peptide nucleic acid (PNA)–DNA hybridization is emerging as an important method in the area of DNA microarrays and biosensors because PNA shows remarkable hybridization properties. In this work, we provide a novel, simple, sensitive, and selective strategy based on a PNA– graphene oxide (GO) assembled biosensor for fluorescence turn-on detection of DNA, in which the new n...

متن کامل

Design of Biosensors Based Transition-Metal Dichalcogenide for DNA-base Detection: A First-Principles Density Functional Theory Study

The main function purpose of nanobiosensors is to sense a biologically specific material and the kind of sensing platform and doping engineering has been an emerging topic and plays an important role in monolayer molybdenum disulfide (mMoS2). In this paper, we theoretically reveal the electronic structures of mMoS2 doped by 3d transition metals. Furthermore, adsorption of nucleic acid [Adenine ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biosensors & bioelectronics

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2014